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ABSTRACT

Because summer rainfall in the middle-lower reaches of the Yangtze River valley has remarkable interannual
and decadal variability and because the precursors that modulate the interannual rainfall change with the
decadal variation of the background state, a new model that employs a novel statistical idea is needed to yield
an accurate prediction. In this study, the interannual rainfall model (IAM) and the decadal rainfall model
(DM) were constructed. Moving updating of the IAM with the latest data within an optimal length of training
period (20yr) can partially offset the effect of decadal change of precursors in IAM. To predict the in-
terannual rainfall of 2001-13 for validation, 13 regression models were fitted with precursors that change
every 4-5yr, from the preceding winter North Atlantic Ocean sea surface temperature anomaly (SSTA)
dipole to the Mascarene high, followed by the East Asia sea level pressure anomaly (SLPA) dipole and the
preceding autumn North Pacific SSTA dipole. The moving updated model demonstrated high skill in pre-
dicting interannual rainfall, with a correlation coefficient of 0.76 and a hit rate of 76.9%. The DM was linked to
the April SLPA in the central tropical Pacific Ocean, and it maintained good performance in the testing
period, with a correlation coefficient of 0.77 and a root-mean-square error (RMSE) of 7.7%. The statistical
model exhibited superior capability even when compared with the best forecast by the Climate Forecast
System, version 2 (CFSv2), initiated in early June, as indicated by increased correlation coefficient from 0.62
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to 0.75 and reduced RMSE from 12.3% to 10.7%.

1. Introduction

Seasonal rainfall prediction is of great importance to the
survival and development of humanity because it is in high
demand for agriculture, water resource management, and
the energy and transportation sectors. As a part of the
East Asian summer monsoon (EASM) major rainfall belt,
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mei-yu-baiu—changma, summer rainfall over the middle-
lower reaches of the Yangtze River valley (YRV) exhibits
large interannual and decadal variability, and the induced
droughts and floods can cause severe economic loss
and casualties, as occurred from flooding in 1998.
Understanding the mechanism of YRV summer rainfall
variation and providing steadily reliable predictions are
crucial to national disaster prevention and mitigation.
Currently, seasonal prediction with fully coupled
climate models has become routine in a number of na-
tional climate centers worldwide. However, rainfall
prediction skill with climate models remains limited,
especially for the EASM rainfall (Lee et al. 2011).
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A statistical prediction model is an alternative to enhance
prediction skill in such a situation. As in-depth studies
have been performed to understand the mechanism of
YRV summer rainfall variation, sea—land—atmosphere
precursors that influence rainfall variation have in-
creasingly been uncovered, such as the decaying and
developing phases of El Nifio-Southern Oscillation
(ENSO) (Xie et al. 2016; Wang et al. 2000; Wang et al.
2009), spring North Atlantic Oscillation/Antarctic Os-
cillation (NAO/AO) (Gong et al. 2011; Wu et al. 2009),
preceding winter Arctic sea ice (Wu et al. 2004), pre-
ceding winter snow depth over the Tibetan Plateau (Wei
etal. 1998; Zhu et al. 2009), and atmospheric circulations
in the Southern Hemisphere (Fan 2006; Liu et al. 2008;
Nan and Li 2003; Xue et al. 2003). With these precursors,
statistical models have been developed to predict sum-
mer rainfall over the YRV. Fan et al. (2008) proposed a
new approach to predict YRV summer rainfall by pre-
dicting the year-to-year increment of rainfall using a
multilinear regression equation that consists of six pre-
cursors, including AO and the meridional wind shear
between 850 and 200 hPa over the Indo-Australian re-
gion. By combining ENSO and spring NAO, Wu et al.
(2009) successfully predicted the EASM strength that is
accurately represented by YRV summer rainfall. Wu
and Yu (2016) constructed a partial least squares (PLS)
model to predict the EASM strength using two leading
PLS modes associated with mega-ENSO.

Along with EASM decadal weakening, summer
rainfall over the YRV has intensified since the 1970s,
followed by a continuing reduction after 2000. The de-
cadal variation of the YRV summer rainfall has
attracted considerable attention. Ping et al. (2006) and
Wei (2006) indicated that there are different sea—land—
atmosphere precursors modulating the YRV summer
rainfall variations on interannual and decadal time
scales. Therefore, it is necessary to differentiate the
interannual and decadal variations when we attempt to
identify precursors and develop statistical prediction
models, which means that the interannual rainfall
model (IAM) and the decadal rainfall model (DM) are
constructed, respectively. Time-scale decomposition has
been demonstrated as an effective approach to statisti-
cally predict summer rainfall over northern China, which
also has interannual and decadal variations that are
modulated by different sea—land-atmosphere precursors
(Guo et al. 2012; Ruan and Li 2016).

The sea-land—atmosphere precursors that modulate the
interannual rainfall variation are not immutable. They
might change with the decadal variation of the background
state. Many studies have focused on the decadal change
of the relationship between interannual EASM rainfall
and the related sea-land-atmosphere precursors. It was
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indicated that the relationship between ENSO and
EASM-related summer rainfall over eastern China has
significantly weakened since the late 1970s (Gao and Wang
2007; Xu et al. 2010; Zhu et al. 2007). Ye and Lu (2011)
have explored the potential causes for the weakening of
this relationship at a subseasonal scale and reported that
ENSO-related rainfall anomalies are similar between early
and late summer before the late 1970s; however, the
anomalous rainfall patterns have almost reversed between
early and late summer after the late 1970s. Ding et al.
(2010) investigated the change of the relationship between
the EASM and the tropical Indian Ocean (IO) from
1953-75 to 1978-2000 and attributed the EASM-IO
relationship shift to the interdecadal change of the back-
ground state of the ocean—atmosphere system and the
interaction between ENSO and the 10. Gao et al. (2014)
uncovered a remarkable decadal shift in the relationship
between spring AO and EASM on an interannual scale in
the late 1990s and further indicated that a subtropical
wave train from the North Atlantic Ocean to IO plays
an important role in connecting AO and EASM in the
post-1997 epoch, while the signal in the pre-1997 epoch
is memorized and persists over the Pacific Ocean.

From the view of seasonal prediction, the predictor—
predictand relationship in the IAM might change,
as Goswami (2005) indicated it reflects the influence of
the decadal variation on the interannual variation. The
decadal change of predictor—predictand relationship in-
fluences the predictability of the statistical model; there-
fore, the statistical model must be constantly scrutinized
and changed as necessary (Rajeevan et al. 2007). Here,
two critical issues are highlighted when IAM is being
constructed; they are (i) a revisit of the identification of
precursors based on the latest data and (ii) a look at the
development of the model in terms of the model training
period. In this study, we aim to explore a new statistical
prediction model in an effort to improve the seasonal
prediction of YRV summer rainfall. The new model can
1) predict interannual and decadal rainfall, respectively,
and 2) incorporate the changing relationship between
precursor and interannual rainfall instead of the re-
lationship being fixed as in previous models.

The framework of this study is structured as follows:
Section 2 presents the data used in this work. Section 3
describes various methods for model development.
Model development and prediction verification are
presented in section 4. Section 5 provides a summary
and brief discussion.

2. Data

Observed rainfall data for the period of 1961-2013
were obtained from China’s 160-station monthly
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FIG. 1. (a) The 17 stations with rain gauges within the middle-lower reaches of the YRV (28°-32°N, east of 110°E).
(b) Power spectrum for the YRV summer rainfall. Peaks above the upper dashed line indicate a confidence level >
90% against red noise. (c) Observed YRV summer rainfall (mm) from 1961 to 2013 and its decadal variation with

a period > 9 yr (thick line).

rainfall dataset provided by the China Meteorological
Administration. The total rainfall during June—August
(JJA) averaged at 17 uniformly spread stations (Fig. 1a;
Anqing, Changde, Changsha, Guixi, Hankou, Hang-
zhou, Hefei, Jiujiang, Nanchang, Nanjing, Ningbo,
Shanghai, Quxian, Tunxi, Yichang, Yueyang, and
Zhongxiang) within 28°-32°N and east of 110°E was
calculated as YRV summer rainfall to be predicted.
For identifying precursors, we used monthly datasets
of various parameters such as mean sea level pressure
(SLP), 500-hPa geopotential height (H500), and sea sur-
face temperature (SST). Monthly atmospheric data from
March, April, and May were used, which were obtained
from the Japan Meteorological Agency Japanese 55-year
Reanalysis (JRA-55) dataset at 1.25° X 1.25° grid
(Kobayashi et al. 2015). SST data were seasonal means
of the preceding autumn (September—-November),
preceding winter (December—February), and spring
(March-May), which were obtained from the monthly
NOAA Extended Reconstructed SST, version 3b
(ERSST.v3b), dataset at 2° X 2° grid (Smith et al. 2008).
To verify the capability of our statistical prediction
model, 9-month-run ensemble forecasts by the NCEP
Climate Forecast System, version 2 (CFSv2), covering a

13-yr period of 2001-13 from retrospective forecast
(2001-10) and operational forecast (2011-13) were em-
ployed. CFSv2, the second version of the fully coupled
dynamic seasonal forecast system, consists of the GFS at
T126 resolution, the Modular Ocean Mode, version 4
(MOM4), at 0.25° X 0.5° grid coupled with a two-layer sea
ice model, and the four-layer Noah land surface model.
This system generated real-time seasonal forecasts since
30 March 2011 (Saha et al. 2014). The 9-month run is
initiated every five days with four cycles of those days. For
each month, the ensemble consists of 24 ensemble mem-
bers with initial dates after the seventh of the previous
month. As a matter of convenience, only the ensemble
mean (equal weight mean of 24 ensemble members) was
used here. Both 1-month-lead forecast (initiated in early
May with initial dates from 11 April to 6 May) and
0-month-lead forecast (initiated in early June with initial
dates from 11 May to 5 June) were employed in our study.

3. Methods

The spectrum analysis reveals two peaks in the YRV
summer rainfall, with periods of 2-3 and 12-14yr
(Fig. 1b). The strong interannual and decadal variations,
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FIG. 2. Key stages in constructing the statistical prediction model: @ is time-scale decomposition; @ is construction of the IAM and DM,;
® is predictions made by IAM and DM; and @ is combination of the predictions from IAM and DM to obtain the total rainfall.

shown in Fig. 1c, motivate us to predict the interannual
and decadal rainfall, respectively, through developing
distinct statistical prediction models.

Figure 2 shows the key stages of model development.
The first step is time-scale decomposition; that is, the
predictand, YRV summer rainfall, y(¢) is decomposed
into the interannual component ya(f) (with a period <
9yr) and the decadal component yd(¢) (with a period >
9yr) with Fourier decomposition filtering. We then con-
struct both the IAM and DM. The entire data period of
19612013 (N = 53) is divided into a training period of
1961-2000 (n = 40) and an independent testing period
of 2001-13 (N — n). For predicting decadal rainfall, a
fixed model is trained with all 40-yr training data. For
predicting interannual rainfall, the model is retrained year
by year with the latest available data as prediction extends.
Using all available data to train the IAM would be unlikely
to produce the best predictions because the predictors in
the IAM could change with the decadal variation of
background state. What is the optimal length of the
training period for a given IAM? We determined the op-
timal training period length w by comparing models
trained with values of w = 20, 25, 30, 35, and 40yr. Sub-
sequently, statistical models are fitted with the latest w-yr
data using the multilinear regression (MLR) method, and
13-yr independent predictions are conducted to validate
the model’s capability. A simple sum (with equal weight)
of the predictions from the TAM and DM is the predicted
total YRV summer rainfall.

In model construction, correlation analysis is first
performed between rainfall and antecedent global
atmosphere—ocean parameters. Any domain with a high
(and significant) correlation coefficient is identified, and
the area-weighted average value is calculated into an
index as a potential predictor. Not every potential pre-
dictor is necessary in fitting the final regression equation.
A “forward” stepwise regression screening nested with

leave-one-out cross validation is utilized to select the
optimal predictors from a set of potential predictors. For
details of this cross-validation-based stepwise regression
approach, see the appendix.

To measure the statistical model’s prediction skill,
statistics such as correlation coefficients, root-mean-
square errors (RMSEs), and hit rates (the ratio of
years in which the anomaly sign is predicted correctly to
the total number of years) are employed. The bootstrap
method (Stine 1985) is used to estimate the confidence
intervals of our prediction.

4. Prediction of the YRV summer rainfall

The YRV summer rainfall is filtered into the interannual
and decadal components, as are the nine antecedent global
parameters (SLP and H500 in March, April, and May; SST
in preceding autumn, preceding winter, and spring). The
IAM and DM are then constructed, respectively.

a. Calibration and validation of the IAM

To determine the optimal training period length, the
predicted interannual rainfall of 2001-07 with training
period lengths of 20, 25, 30, 35, and 40yr are examined
(Fig. 3a). The model with a training period of 20yr, for
example, uses training data from 1981 to 2000 to predict
rainfall of 2001, training data from 1982 to 2001 to predict
rainfall of 2002, and so on. Figure 3b compares the pre-
diction skill as measured with correlation coefficients and
RMSEs. The model with a training period of 20 yr yields
the best prediction, with the highest correlation co-
efficient of 0.63, the lowest RMSE of 25.8 mm (5.45% of
the climatology), and a hit rate of 71.4%. Therefore, a
20-yr training period is chosen as the optimal length for
IAM construction.

A 20-yr moving correlation between YRV summer
rainfall and nine antecedent global parameters on
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FIG. 3. (a) Interannual rainfall over 2001-07 from observations (open circles) and statistical prediction models
(colored circles) trained with 20 (red), 25 (yellow), 30 (green), 35 (blue), and 40 (purple) yr of data. (b) Statistics for

the 7-yr predictions.

an interannual scale are performed for the period of
1981-2012. As an example, the distribution of correlation
coefficients between rainfall and May SLP is shown in
Fig. 4. The locations of the significant correlation co-
efficients change over time: for example, a shrinking
center with a positive correlation coefficient over eastern
China and the northwestern Pacific and an expanding
center with a negative correlation coefficient over western
China and northern India. These time-changing features
highlight the necessity for updating the prediction model
using precursors reidentified with the latest data.

Because we were limited to illustrating all correlation
distributions one by one (9 parameters for each model X
13 models for 2001-13), Fig. 5 shows four representative
cases. It seems that some highly correlated signals, like
ENSO, SST anomaly (SSTA) dipole over North Atlantic
in Fig. 5a, and Mascarene high in Fig. 5b, have been
indicated to influence the interannual variation of YRV
summer rainfall by the previous studies (Pan 2005; Wu
et al. 2009; Xue et al. 2003). Meanwhile, some highly
correlated signals, like an east-west SLP anomaly
(SLPA) dipole over East Asia in Fig. 5c and an east—
west SSTA dipole over North Pacific in Fig. 5d, are
newly identified. All these highly correlated signals are
identified as potential precursors that were further
selected through stepwise regression screening.

After stepwise regression screening, optimal pre-
cursors were selected to fit the final regression equation.
Table 1 lists the prediction models fitted year by year for
predicting rainfall of 2001-13, as well as the precursors
used in each model. All prediction models, which consist
of single and binary linear regression equations, are
statistically significant at the 0.05 level. These models
represent well the observed interannual rainfall in the
fitting period as indicated by the lowest correlation
coefficient of 0.73 (explaining 53% of interannual vari-
ance) for predicting rainfall of 2002 and the largest

correlation coefficient of 0.92 (explaining 85% of in-
terannual variance) for predicting rainfall of 2008. It is
interesting that the precursors in the 13 models change
every 4-5 years, generally from the preceding winter
North Atlantic SSTA dipole for 2001 to the Mascarene
high for 2002-05, followed by the East Asia SLPA di-
pole for 2006-10 and the preceding autumn North
Pacific SSTA dipole for 2012/13.

Using the moving updated IAM, 13-yr independent
predictions of the interannual YRV summer rainfall
for 2001-13 were conducted year by year. Figure 6
shows the observed and statistically predicted in-
terannual rainfall as well as the 95% confidence in-
tervals. The IAM effectively captures the interannual
variation of YRV summer rainfall with a correlation
coefficient of 0.76 and an RMSE of 34.7 mm (7.32% of
the climatology). It correctly predicts the rainfall
anomaly signs of 10 out of 13 years for a hit rate of
76.9% . Moreover, the model can predict the amplitude
of interannual variability well, as indicated by the in-
terannual standard deviation ratio of 0.74 between
prediction and observation.

b. Calibration and validation of the DM

The decadal correlations between YRV summer
rainfall and nine antecedent global parameters were
produced for the period of 1961-2000 (Fig. 7). The area
with absolute of central correlation coefficient exceed-
ing 0.6 is identified, and the area-weighted average is
calculated as a potential precursor. All of the potential
precursors are significantly correlated with the decadal
variation of YRV summer rainfall at the 0.05 level after
adjusting the degrees of freedom. After stepwise
regression screening, only one precursor, the April
SLPA in the central tropical Pacific (marked in
Fig.7¢), was selected to fit the final regression equation
given by
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significance at the 0.05 level.
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FIG. 5. Interannual correlations of YRV summer rainfall with (a) the preceding winter SST over 1981-2000, (b) March SLP over 1982-2001,
(c) May SLP over 1988-2007, and (d) the preceding autumn SST over 1993-2012. Color shading indicates statistical significance at the 0.05 level.

yd(#) = 516.8 + 55.9 X SLP (1), (1)
where yd(¢) is the decadal rainfall at the rth year
(t =1, ..., 40) over 1961-2000, and SLPcp(?) is the
tth value of the normalized SLPcp.

The predictor SLPcp represents the central tropical
Pacific SLPA in April. How does it affect the YRV
summer (JJA) rainfall? Figures 8a—f show the decadal
correlation of SLPcp with SST and 500-hPa vertical
velocity in simultaneous April and ensuing May and
summer (JJA). It seems that SLPcp is highly correlated
with anomalous warming over both the western and
the eastern tropical Pacific. The western anomalous
warming enhances the Walker circulation in the western
Pacific while the eastern anomalous warming reduces
the Walker circulation in the eastern Pacific, as in-
dicated by anomalous ascent over the western and
eastern Pacific and anomalous decent over the central
Pacific at the 500-hPa level. Anomalous zonal atmo-
spheric circulation along the equator raises SLP over
the central Pacific. It is noteworthy that this SSTA
pattern with anomalous warming over the western and
eastern tropical Pacific can persist from April to JJA,
giving rise to influences on the summer climate.
Figure 8g shows the decadal correlation of SLPcp with
summer 850-hPa meridional winds. Corresponding to

SLPcp positive anomalies, anomalous easterly and
westerly flow prevails along the equator over the
western and the eastern Pacific, and an anticyclonic
anomaly appears over the western North Pacific as
Rossby wave response. Abundant water vapor is trans-
ported to the YRV region along the western boundary
of the enhanced western North Pacific anticyclone,
resulting in sufficient YRV summer rainfall.

Figure 9 shows the observed and predicted decadal
YRYV summer rainfall from Eq. (1) in both the training
period and the independent testing period as well
as the 95% confidence intervals. The DM did a good job
at capturing the decadal variation of rainfall in both
the training period and the subsequent independent
testing period. When compared with observation, the
DM obtained a correlation coefficient of 0.76 and an
RMSE of 48.4mm (10.2% of the climatology) in the
training period, and the high skill is maintained in the
subsequent independent testing period, with a correla-
tion coefficient of 0.77 and RMSE of 36.3mm (7.7% of
the climatology).

c. Total rainfall

It is straightforward to obtain the predicted total
summer rainfall by summing the predictions from the
IAM and the DM. Figure 10 shows the observed and
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FIG. 6. Interannual rainfall over 2001-13 from observations (open circles) and statistical pre-
diction model (green dots). Dashed lines denote the 95% confidence intervals.

statistical model predicted YRV summer rainfall
anomalies for 2001-13 together with the 95% confi-
dence intervals in comparison with the 1-month-lead
and 0-month-lead CFSv2 forecasts. Because the pre-
diction of summer rainfall is required in real time
before June, we compared the statistical prediction
with the 1-month-lead CFSv2 forecast. It seems that
the 1-month-lead CFSv2 forecast can barely capture
the observed rainfall variability with a correlation
coefficient of 0.34 and an RMSE of 70.5mm (14.9%
of the climatology). By contrast, our statistical
model provides skillful prediction, with correlation
coefficient increased to 0.75 and RMSE reduced to

50.4mm (10.7% of the climatology), even better than
the best CFSv2 forecast initiated in early June
(0-month-lead forecast), with a correlation coefficient
of 0.62 and an RMSE of 583mm (12.3% of the
climatology). The 13-yr independent predictions dem-
onstrate that our statistical prediction model has a high
capability for capturing the YRV summer rainfall and is
therefore promising for real-time seasonal prediction.

5. Summary and discussion

Because the YRV summer rainfall has such distinct
variations on interannual and decadal scales and because
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geopotential height over 1961-2000.
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the precursors that modulate the interannual rainfall
change with the decadal variation of background state, the
existing statistical prediction model, single and fixed, can-
not provide stable and accurate prediction. Efforts con-
tinue toward this end, and attempts to adopt more suitable

’§750

statistical techniques have resulted in the development of
new models that make use of novel statistical ideas for
improving the prediction skill for YRV summer rainfall.
In this study, we constructed the IAM and DM,
respectively, with precursors selected based on a set of
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FIG. 9. Decadal rainfall over the training period of 1961-2000 and the independent testing
period of 2001-13 from the observations (open circles) and statistical prediction model (green
dots). Dashed lines denote the 95% confidence intervals.
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FIG. 10. YRV summer rainfall anomalies over 2001-13 from the observations (gray bars),
1-month-lead CFSv2 forecasts (dark blue), 0-month-lead CFSv2 forecasts (light blue), and
the statistical prediction model (green). Dashed lines denote the 95% confidence intervals.

objective criteria. Moreover, the moving updating of the
IAM with the latest data within an optimal length of
training period partially offset the effect of decadal change
of precursors that modulate the interannual rainfall. In
IAM, an optimal training period length of 20yr was
determined. To predict the interannual rainfall of 2001-13
for validation, 13 regression models were fitted with
precursors that change every 4-5 yr from the preceding
winter North Atlantic SSTA dipole for 2001 to the
Mascarene high for 2002-05, followed by the East Asia
SLPA dipole for 2006-10 and the preceding autumn
North Pacific SSTA dipole for 2012/13. This moving
updated IAM demonstrated high skill in predicting
interannual rainfall, with a correlation coefficient of
0.76 and a hit rate of 76.9%. The DM was linked to the
April SLPA in the central tropical Pacific, and it
maintained good performance in the testing period,
with a correlation coefficient of 0.77 and an RMSE of
7.7%. Taking the predicted interannual and decadal
rainfall together, we obtained the predictions of YRV
summer rainfall for 2001-13. Our statistical model
exhibited superior capability in predicting YRV sum-
mer rainfall even when compared with the best CFSv2
forecast initiated in early June (0-month-lead forecast),
asindicated by the increased correlation coefficient from
0.62 to 0.75 and reduced RMSE from 12.3% to 10.7%.

Moving updating of the IAM cannot completely
overcome the failure of statistical prediction stemming
from the decadal change of precursors that modulate the
interannual rainfall, especially for the rainfall of the year
in which the decadal change occurs. It should be ad-
mitted that the moving updated model outperforms the
traditional fixed statistical model because it can partially
offset the effect of decadal change. When compared
with those empirical models constructed previously to
predict the EASM strength (Wu et al. 2009; Wu and Yu
2016), our statistical model generates comparable or
even better skill, although differences exist in lead time
and prediction period. In addition, comparisons with

other dynamical predictions are needed since dynamical
models are the main tools for future seasonal prediction.
Li et al. (2016) evaluated an operational forecast system
currently used in Met Office, Global Seasonal Forecast
System, version 5 (GloSea5), whose ensemble mean
has a general good prediction for YRV summer rainfall
with a correlation coefficient of 0.55 for the 1992-2013
period. By comparison, our statistical model manifests
superior skill for YRV summer rainfall that is promising
for real-time operational prediction.
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APPENDIX

Cross-Validation-Based Stepwise Regression
Approach

The cross-validation-based stepwise regression (CVSR)
approach is a “forward” stepwise screening procedure
to select the “‘optimal” predictors from the potential
predictor set. It employs leave-one-out cross validation
in order to select the robust predictors and reduce the
false possibility. The root-mean-square error between
observation and cross-validation estimates (CV-RMSE)
is taken as the criterion to evaluate the performance of
potential predictors.

The CVSR method can be described in a general form
using a series of iteration steps:

P
Y(t)=c+ X BX,(t)+e(t), (A1)

i=1
where Y(¢) is the predictand for a t = 1, ... , n year

training period, X,(¢) is the rth observation of the pre-
dictor X; selected from candidate predictors Zy, ..., Z,,
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by the ith step in ‘“forward” stepwise regression
screening, ¢ and f; are model parameters, and &() is the
error of the estimated model, Eq (Al). Model Eq. (A1)
is established by p < m steps:

Step 1: Regress the predictand Y(¢f) onto each of
the potential predictors Z,[i; € (1, ..., m)] to obtain
1-predictor regression equation f;,. The performance of
each 1-predictor regression equation is measured by
CV-RMSE at step 1 as

CV-RMSE, = % ; Yo -f, 1z, O (A2)

where regression equation f; _, is fitted by Z; (j)[j €
1, ..., n)\(®)], that is, all observations excluding the
tth one. If CV-RMSE; is the smallest CV-RMSE
(CV-RMSE,), then the potential predictor Z; is se-
lected as the first predictor, that is, X1 = Z;,.

Step 2: Regress Y(¢) onto X; and each of the remaining
m — 1 potential predictors Z,[i; € (1, ... , m)]\(#)],
that is, all potential predictors except Z;, to write
2-predictor regression equation f;,. The performance
of each 2-predictor regression equation is measured by
CV-RMSE at step 2 as
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CV-RMSE, =[5 3 (YO 1, [X,0. 2,01,
(A3)

where regression equation f, _, is fitted by
X1(0), Z,(ND[j € 4, ..., n\(@#)]. Now, if CV-RMSE,, is
the smallest CV-RMSE achieved at step 2, that is,
over, CV-RMSE, is significantly smaller than CV-
RMSE,, then the potential predictor Z,, is selected as
the second predictor, that is, X, = Z,,; otherwise, stop
selecting new predictors. To statistically test the signif-
icant reduction in CV-RMSE, relative to CV-RMSE;,,
tand Ftests are utilized to test the quadratic errors series
between the observation and cross-validated estimates ob-
tained atstep 2 (i.e., {Y(t) — fo— [X1(6), Xo(O)|/ t € (1, ... ,n),
where f, _, is fitted by X;(j), X2(j), [ € (1, ..., n)\@®)])
and at step 1 (i.e., {Y(¢) — fi_[Xi(O)% te (1, ..., n),
where fi _,is fitted by X1(j), [j € (1, ..., n)\(¥)]) in terms
of the mean value and the variance.

Generally, at step k, assume that there are k — 1
predictors X1 =Z2;, ..., Xk-1 = Z,,_, selected from the
original potential predictors Zy, ..., Z,,, and the asso-
ciated smallest CV-RMSE at step k — 1 is

. 1
l’l’lll’l_ ) —
b €1\ i ) \[ 1

CV-RMSE, , =

where regression equation f;_, _, is fitted by Xi(j), ...,
X(k—Z)(j)’ Zik—l(j)’ [] € (1’ ) l’l)\(l)]

Regress Y(¢) onto Xy, ..., Xx—1 and each Z,[i; €
1, ...,m\(i, iz, . .., ix—1)] of remaining m — (k — 1)

g YO~ f,_ _IX0,.... X, 0.2, O,

(A4)

potential predictors to write k-predictor regression
equation f;. The performance of each k-predictor
regression equation is measured by CV-RMSE at
step k:

CV'RMSEik = \/% g {Y (v _f;k,ft[Xl([)’ o X (O, Zik([)]}z’

where regression equation f;, —, is fitted by X;(j), ...,
Xy (s Zy () T € (1, ... MO

If CV-RMSE,, is the smallest CV-RMSE achieved
at step k, that is, CV-RMSE; = min; c(1, . m)\Gy,...ir_1)
(CV-RMSE,,), and moreover, CV-RMSE,, is signifi-
cantly smaller than CV-RMSE,_, then the potential
predictor Z; is selected as the kth predictor, that is,
X« = Z,; otherwise, stop selecting new predictors.
The ¢ and F tests are utilized to statistically test
the quadratic errors series between the observation
and cross-validated estimates obtained at step k (i.e.,

(AS)

(Y(O) —fr—X1(0), ..., Xe(O)5 t€(, . .., n) —, where fi -,
is fitted by X1(j), ..., Xk(j), [f € (1, ..., n)\(¥)]) and at step
k=1 (ieo {Y() ~fi1—Xi(0), .., Xeoa (D] 1 €
(1,...,n), where fi _1 s fitted by X;(}), ..., Xx—1(})),
[j€(,...,n)\()]) in terms of the mean value and the
variance.

Finally, for all of the selected predictors via the CVSR
procedure, the F test is used to test their regression co-
efficients. The insignificant predictors would be excluded,
and the remaining predictors are used to fit the multi-
linear regression equation with the least squares method.
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