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ABSTRACT

Because summer rainfall in the middle-lower reaches of the Yangtze River valley has remarkable interannual

and decadal variability and because the precursors that modulate the interannual rainfall change with the

decadal variation of the background state, a newmodel that employs a novel statistical idea is needed to yield

an accurate prediction. In this study, the interannual rainfall model (IAM) and the decadal rainfall model

(DM) were constructed. Moving updating of the IAMwith the latest data within an optimal length of training

period (20 yr) can partially offset the effect of decadal change of precursors in IAM. To predict the in-

terannual rainfall of 2001–13 for validation, 13 regression models were fitted with precursors that change

every 4–5 yr, from the preceding winter North Atlantic Ocean sea surface temperature anomaly (SSTA)

dipole to the Mascarene high, followed by the East Asia sea level pressure anomaly (SLPA) dipole and the

preceding autumn North Pacific SSTA dipole. The moving updated model demonstrated high skill in pre-

dicting interannual rainfall, with a correlation coefficient of 0.76 and a hit rate of 76.9%.TheDMwas linked to

the April SLPA in the central tropical Pacific Ocean, and it maintained good performance in the testing

period, with a correlation coefficient of 0.77 and a root-mean-square error (RMSE) of 7.7%. The statistical

model exhibited superior capability even when compared with the best forecast by the Climate Forecast

System, version 2 (CFSv2), initiated in early June, as indicated by increased correlation coefficient from 0.62

to 0.75 and reduced RMSE from 12.3% to 10.7%.

1. Introduction

Seasonal rainfall prediction is of great importance to the

survival and development of humanity because it is in high

demand for agriculture, water resource management, and

the energy and transportation sectors. As a part of the

EastAsian summermonsoon (EASM)major rainfall belt,

mei-yu–baiu–changma, summer rainfall over the middle-

lower reaches of the Yangtze River valley (YRV) exhibits

large interannual and decadal variability, and the induced

droughts and floods can cause severe economic loss

and casualties, as occurred from flooding in 1998.

Understanding the mechanism of YRV summer rainfall

variation and providing steadily reliable predictions are

crucial to national disaster prevention and mitigation.

Currently, seasonal prediction with fully coupled

climate models has become routine in a number of na-

tional climate centers worldwide. However, rainfall

prediction skill with climate models remains limited,

especially for the EASM rainfall (Lee et al. 2011).

a Additional affiliation: Laboratory for Regional Oceanography

and Numerical Modeling, Qingdao National Laboratory for

Marine Science and Technology, Qingdao, China.

Corresponding author: Dr. Jianping Li, ljp@bnu.edu.cn

AUGUST 2017 GUO ET AL . 2275

DOI: 10.1175/JAMC-D-16-0376.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:ljp@bnu.edu.cn
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


A statistical predictionmodel is an alternative to enhance

prediction skill in such a situation. As in-depth studies

have been performed to understand the mechanism of

YRV summer rainfall variation, sea–land–atmosphere

precursors that influence rainfall variation have in-

creasingly been uncovered, such as the decaying and

developing phases of El Niño–Southern Oscillation

(ENSO) (Xie et al. 2016; Wang et al. 2000; Wang et al.

2009), spring North Atlantic Oscillation/Antarctic Os-

cillation (NAO/AO) (Gong et al. 2011; Wu et al. 2009),

preceding winter Arctic sea ice (Wu et al. 2004), pre-

ceding winter snow depth over the Tibetan Plateau (Wei

et al. 1998; Zhu et al. 2009), and atmospheric circulations

in the Southern Hemisphere (Fan 2006; Liu et al. 2008;

Nan andLi 2003; Xue et al. 2003).With these precursors,

statistical models have been developed to predict sum-

mer rainfall over the YRV. Fan et al. (2008) proposed a

new approach to predict YRV summer rainfall by pre-

dicting the year-to-year increment of rainfall using a

multilinear regression equation that consists of six pre-

cursors, including AO and the meridional wind shear

between 850 and 200 hPa over the Indo-Australian re-

gion. By combining ENSO and spring NAO, Wu et al.

(2009) successfully predicted the EASM strength that is

accurately represented by YRV summer rainfall. Wu

and Yu (2016) constructed a partial least squares (PLS)

model to predict the EASM strength using two leading

PLS modes associated with mega-ENSO.

Along with EASM decadal weakening, summer

rainfall over the YRV has intensified since the 1970s,

followed by a continuing reduction after 2000. The de-

cadal variation of the YRV summer rainfall has

attracted considerable attention. Ping et al. (2006) and

Wei (2006) indicated that there are different sea–land–

atmosphere precursors modulating the YRV summer

rainfall variations on interannual and decadal time

scales. Therefore, it is necessary to differentiate the

interannual and decadal variations when we attempt to

identify precursors and develop statistical prediction

models, which means that the interannual rainfall

model (IAM) and the decadal rainfall model (DM) are

constructed, respectively. Time-scale decomposition has

been demonstrated as an effective approach to statisti-

cally predict summer rainfall over northern China, which

also has interannual and decadal variations that are

modulated by different sea–land–atmosphere precursors

(Guo et al. 2012; Ruan and Li 2016).

The sea–land–atmosphere precursors that modulate the

interannual rainfall variation are not immutable. They

might changewith the decadal variation of the background

state. Many studies have focused on the decadal change

of the relationship between interannual EASM rainfall

and the related sea–land–atmosphere precursors. It was

indicated that the relationship between ENSO and

EASM-related summer rainfall over eastern China has

significantlyweakened since the late 1970s (Gao andWang

2007; Xu et al. 2010; Zhu et al. 2007). Ye and Lu (2011)

have explored the potential causes for the weakening of

this relationship at a subseasonal scale and reported that

ENSO-related rainfall anomalies are similar between early

and late summer before the late 1970s; however, the

anomalous rainfall patterns have almost reversed between

early and late summer after the late 1970s. Ding et al.

(2010) investigated the change of the relationship between

the EASM and the tropical Indian Ocean (IO) from

1953–75 to 1978–2000 and attributed the EASM–IO

relationship shift to the interdecadal change of the back-

ground state of the ocean–atmosphere system and the

interaction between ENSO and the IO. Gao et al. (2014)

uncovered a remarkable decadal shift in the relationship

between springAO andEASMon an interannual scale in

the late 1990s and further indicated that a subtropical

wave train from the North Atlantic Ocean to IO plays

an important role in connecting AO and EASM in the

post-1997 epoch, while the signal in the pre-1997 epoch

is memorized and persists over the Pacific Ocean.

From the view of seasonal prediction, the predictor–

predictand relationship in the IAM might change,

as Goswami (2005) indicated it reflects the influence of

the decadal variation on the interannual variation. The

decadal change of predictor–predictand relationship in-

fluences the predictability of the statistical model; there-

fore, the statistical model must be constantly scrutinized

and changed as necessary (Rajeevan et al. 2007). Here,

two critical issues are highlighted when IAM is being

constructed; they are (i) a revisit of the identification of

precursors based on the latest data and (ii) a look at the

development of the model in terms of the model training

period. In this study, we aim to explore a new statistical

prediction model in an effort to improve the seasonal

prediction of YRV summer rainfall. The new model can

1) predict interannual and decadal rainfall, respectively,

and 2) incorporate the changing relationship between

precursor and interannual rainfall instead of the re-

lationship being fixed as in previous models.

The framework of this study is structured as follows:

Section 2 presents the data used in this work. Section 3

describes various methods for model development.

Model development and prediction verification are

presented in section 4. Section 5 provides a summary

and brief discussion.

2. Data

Observed rainfall data for the period of 1961–2013

were obtained from China’s 160-station monthly
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rainfall dataset provided by the China Meteorological

Administration. The total rainfall during June–August

(JJA) averaged at 17 uniformly spread stations (Fig. 1a;

Anqing, Changde, Changsha, Guixi, Hankou, Hang-

zhou, Hefei, Jiujiang, Nanchang, Nanjing, Ningbo,

Shanghai, Quxian, Tunxi, Yichang, Yueyang, and

Zhongxiang) within 288–328N and east of 1108E was

calculated as YRV summer rainfall to be predicted.

For identifying precursors, we used monthly datasets

of various parameters such as mean sea level pressure

(SLP), 500-hPa geopotential height (H500), and sea sur-

face temperature (SST). Monthly atmospheric data from

March, April, and May were used, which were obtained

from the JapanMeteorological Agency Japanese 55-year

Reanalysis (JRA-55) dataset at 1.258 3 1.258 grid

(Kobayashi et al. 2015). SST data were seasonal means

of the preceding autumn (September–November),

preceding winter (December–February), and spring

(March–May), which were obtained from the monthly

NOAA Extended Reconstructed SST, version 3b

(ERSST.v3b), dataset at 28 3 28 grid (Smith et al. 2008).

To verify the capability of our statistical prediction

model, 9-month-run ensemble forecasts by the NCEP

Climate Forecast System, version 2 (CFSv2), covering a

13-yr period of 2001–13 from retrospective forecast

(2001–10) and operational forecast (2011–13) were em-

ployed. CFSv2, the second version of the fully coupled

dynamic seasonal forecast system, consists of the GFS at

T126 resolution, the Modular Ocean Mode, version 4

(MOM4), at 0.258 3 0.58 grid coupled with a two-layer sea
ice model, and the four-layer Noah land surface model.

This system generated real-time seasonal forecasts since

30 March 2011 (Saha et al. 2014). The 9-month run is

initiated every five days with four cycles of those days. For

each month, the ensemble consists of 24 ensemble mem-

bers with initial dates after the seventh of the previous

month. As a matter of convenience, only the ensemble

mean (equal weight mean of 24 ensemble members) was

used here. Both 1-month-lead forecast (initiated in early

May with initial dates from 11 April to 6 May) and

0-month-lead forecast (initiated in early June with initial

dates from 11May to 5 June) were employed in our study.

3. Methods

The spectrum analysis reveals two peaks in the YRV

summer rainfall, with periods of 2–3 and 12–14 yr

(Fig. 1b). The strong interannual and decadal variations,

FIG. 1. (a) The 17 stations with rain gauges within the middle-lower reaches of the YRV (288–328N, east of 1108E).
(b) Power spectrum for the YRV summer rainfall. Peaks above the upper dashed line indicate a confidence level .
90% against red noise. (c) Observed YRV summer rainfall (mm) from 1961 to 2013 and its decadal variation with

a period . 9 yr (thick line).
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shown in Fig. 1c, motivate us to predict the interannual

and decadal rainfall, respectively, through developing

distinct statistical prediction models.

Figure 2 shows the key stages of model development.

The first step is time-scale decomposition; that is, the

predictand, YRV summer rainfall, y(t) is decomposed

into the interannual component ya(t) (with a period ,
9yr) and the decadal component yd(t) (with a period .
9yr) with Fourier decomposition filtering. We then con-

struct both the IAM and DM. The entire data period of

1961–2013 (N 5 53) is divided into a training period of

1961–2000 (n 5 40) and an independent testing period

of 2001–13 (N 2 n). For predicting decadal rainfall, a

fixed model is trained with all 40-yr training data. For

predicting interannual rainfall, the model is retrained year

by year with the latest available data as prediction extends.

Using all available data to train the IAMwould be unlikely

to produce the best predictions because the predictors in

the IAM could change with the decadal variation of

background state. What is the optimal length of the

training period for a given IAM? We determined the op-

timal training period length w by comparing models

trained with values of w 5 20, 25, 30, 35, and 40yr. Sub-

sequently, statistical models are fitted with the latestw-yr

data using themultilinear regression (MLR)method, and

13-yr independent predictions are conducted to validate

the model’s capability. A simple sum (with equal weight)

of the predictions from the IAM andDM is the predicted

total YRV summer rainfall.

In model construction, correlation analysis is first

performed between rainfall and antecedent global

atmosphere–ocean parameters. Any domain with a high

(and significant) correlation coefficient is identified, and

the area-weighted average value is calculated into an

index as a potential predictor. Not every potential pre-

dictor is necessary in fitting the final regression equation.

A ‘‘forward’’ stepwise regression screening nested with

leave-one-out cross validation is utilized to select the

optimal predictors from a set of potential predictors. For

details of this cross-validation-based stepwise regression

approach, see the appendix.

To measure the statistical model’s prediction skill,

statistics such as correlation coefficients, root-mean-

square errors (RMSEs), and hit rates (the ratio of

years in which the anomaly sign is predicted correctly to

the total number of years) are employed. The bootstrap

method (Stine 1985) is used to estimate the confidence

intervals of our prediction.

4. Prediction of the YRV summer rainfall

TheYRVsummer rainfall is filtered into the interannual

and decadal components, as are the nine antecedent global

parameters (SLP andH500 inMarch,April, andMay; SST

in preceding autumn, preceding winter, and spring). The

IAM and DM are then constructed, respectively.

a. Calibration and validation of the IAM

To determine the optimal training period length, the

predicted interannual rainfall of 2001–07 with training

period lengths of 20, 25, 30, 35, and 40yr are examined

(Fig. 3a). The model with a training period of 20yr, for

example, uses training data from 1981 to 2000 to predict

rainfall of 2001, training data from 1982 to 2001 to predict

rainfall of 2002, and so on. Figure 3b compares the pre-

diction skill as measured with correlation coefficients and

RMSEs. The model with a training period of 20yr yields

the best prediction, with the highest correlation co-

efficient of 0.63, the lowest RMSE of 25.8mm (5.45% of

the climatology), and a hit rate of 71.4%. Therefore, a

20-yr training period is chosen as the optimal length for

IAM construction.

A 20-yr moving correlation between YRV summer

rainfall and nine antecedent global parameters on

FIG. 2. Key stages in constructing the statistical prediction model:① is time-scale decomposition;② is construction of the IAM and DM;

③ is predictions made by IAM and DM; and ④ is combination of the predictions from IAM and DM to obtain the total rainfall.
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an interannual scale are performed for the period of

1981–2012. As an example, the distribution of correlation

coefficients between rainfall and May SLP is shown in

Fig. 4. The locations of the significant correlation co-

efficients change over time: for example, a shrinking

center with a positive correlation coefficient over eastern

China and the northwestern Pacific and an expanding

center with a negative correlation coefficient over western

China and northern India. These time-changing features

highlight the necessity for updating the prediction model

using precursors reidentified with the latest data.

Because we were limited to illustrating all correlation

distributions one by one (9 parameters for eachmodel3
13 models for 2001–13), Fig. 5 shows four representative

cases. It seems that some highly correlated signals, like

ENSO, SST anomaly (SSTA) dipole over North Atlantic

in Fig. 5a, and Mascarene high in Fig. 5b, have been

indicated to influence the interannual variation of YRV

summer rainfall by the previous studies (Pan 2005; Wu

et al. 2009; Xue et al. 2003). Meanwhile, some highly

correlated signals, like an east–west SLP anomaly

(SLPA) dipole over East Asia in Fig. 5c and an east–

west SSTA dipole over North Pacific in Fig. 5d, are

newly identified. All these highly correlated signals are

identified as potential precursors that were further

selected through stepwise regression screening.

After stepwise regression screening, optimal pre-

cursors were selected to fit the final regression equation.

Table 1 lists the prediction models fitted year by year for

predicting rainfall of 2001–13, as well as the precursors

used in eachmodel. All predictionmodels, which consist

of single and binary linear regression equations, are

statistically significant at the 0.05 level. These models

represent well the observed interannual rainfall in the

fitting period as indicated by the lowest correlation

coefficient of 0.73 (explaining 53% of interannual vari-

ance) for predicting rainfall of 2002 and the largest

correlation coefficient of 0.92 (explaining 85% of in-

terannual variance) for predicting rainfall of 2008. It is

interesting that the precursors in the 13 models change

every 4–5 years, generally from the preceding winter

North Atlantic SSTA dipole for 2001 to the Mascarene

high for 2002–05, followed by the East Asia SLPA di-

pole for 2006–10 and the preceding autumn North

Pacific SSTA dipole for 2012/13.

Using the moving updated IAM, 13-yr independent

predictions of the interannual YRV summer rainfall

for 2001–13 were conducted year by year. Figure 6

shows the observed and statistically predicted in-

terannual rainfall as well as the 95% confidence in-

tervals. The IAM effectively captures the interannual

variation of YRV summer rainfall with a correlation

coefficient of 0.76 and an RMSE of 34.7mm (7.32% of

the climatology). It correctly predicts the rainfall

anomaly signs of 10 out of 13 years for a hit rate of

76.9%. Moreover, the model can predict the amplitude

of interannual variability well, as indicated by the in-

terannual standard deviation ratio of 0.74 between

prediction and observation.

b. Calibration and validation of the DM

The decadal correlations between YRV summer

rainfall and nine antecedent global parameters were

produced for the period of 1961–2000 (Fig. 7). The area

with absolute of central correlation coefficient exceed-

ing 0.6 is identified, and the area-weighted average is

calculated as a potential precursor. All of the potential

precursors are significantly correlated with the decadal

variation of YRV summer rainfall at the 0.05 level after

adjusting the degrees of freedom. After stepwise

regression screening, only one precursor, the April

SLPA in the central tropical Pacific (marked in

Fig. 7e), was selected to fit the final regression equation

given by

（a）

obs.
25-year training

20-year training
30-year training

35-year training 40-year training

（b）

FIG. 3. (a) Interannual rainfall over 2001–07 from observations (open circles) and statistical prediction models

(colored circles) trained with 20 (red), 25 (yellow), 30 (green), 35 (blue), and 40 (purple) yr of data. (b) Statistics for

the 7-yr predictions.
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FIG. 4. The 20-yr moving correlations between YRV summer rainfall and SLP in May on an interannual scale over

1981–2012. The year on the top left of each panel is the year to be predicted. Color shading indicates statistical

significance at the 0.05 level.
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yd(t)5 516:81 55:93SLP
CP
(t) , (1)

where yd(t) is the decadal rainfall at the tth year

(t 5 1, . . . , 40) over 1961–2000, and SLPCP(t) is the

tth value of the normalized SLPCP.

The predictor SLPCP represents the central tropical

Pacific SLPA in April. How does it affect the YRV

summer (JJA) rainfall? Figures 8a–f show the decadal

correlation of SLPCP with SST and 500-hPa vertical

velocity in simultaneous April and ensuing May and

summer (JJA). It seems that SLPCP is highly correlated

with anomalous warming over both the western and

the eastern tropical Pacific. The western anomalous

warming enhances theWalker circulation in the western

Pacific while the eastern anomalous warming reduces

the Walker circulation in the eastern Pacific, as in-

dicated by anomalous ascent over the western and

eastern Pacific and anomalous decent over the central

Pacific at the 500-hPa level. Anomalous zonal atmo-

spheric circulation along the equator raises SLP over

the central Pacific. It is noteworthy that this SSTA

pattern with anomalous warming over the western and

eastern tropical Pacific can persist from April to JJA,

giving rise to influences on the summer climate.

Figure 8g shows the decadal correlation of SLPCP with

summer 850-hPa meridional winds. Corresponding to

SLPCP positive anomalies, anomalous easterly and

westerly flow prevails along the equator over the

western and the eastern Pacific, and an anticyclonic

anomaly appears over the western North Pacific as

Rossby wave response. Abundant water vapor is trans-

ported to the YRV region along the western boundary

of the enhanced western North Pacific anticyclone,

resulting in sufficient YRV summer rainfall.

Figure 9 shows the observed and predicted decadal

YRV summer rainfall from Eq. (1) in both the training

period and the independent testing period as well

as the 95% confidence intervals. The DM did a good job

at capturing the decadal variation of rainfall in both

the training period and the subsequent independent

testing period. When compared with observation, the

DM obtained a correlation coefficient of 0.76 and an

RMSE of 48.4mm (10.2% of the climatology) in the

training period, and the high skill is maintained in the

subsequent independent testing period, with a correla-

tion coefficient of 0.77 and RMSE of 36.3mm (7.7% of

the climatology).

c. Total rainfall

It is straightforward to obtain the predicted total

summer rainfall by summing the predictions from the

IAM and the DM. Figure 10 shows the observed and

FIG. 5. Interannual correlations of YRV summer rainfall with (a) the preceding winter SST over 1981–2000, (b) March SLP over 1982–2001,

(c)May SLP over 1988–2007, and (d) the preceding autumn SST over 1993–2012. Color shading indicates statistical significance at the 0.05 level.
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statistical model predicted YRV summer rainfall

anomalies for 2001–13 together with the 95% confi-

dence intervals in comparison with the 1-month-lead

and 0-month-lead CFSv2 forecasts. Because the pre-

diction of summer rainfall is required in real time

before June, we compared the statistical prediction

with the 1-month-lead CFSv2 forecast. It seems that

the 1-month-lead CFSv2 forecast can barely capture

the observed rainfall variability with a correlation

coefficient of 0.34 and an RMSE of 70.5mm (14.9%

of the climatology). By contrast, our statistical

model provides skillful prediction, with correlation

coefficient increased to 0.75 and RMSE reduced to

50.4mm (10.7% of the climatology), even better than

the best CFSv2 forecast initiated in early June

(0-month-lead forecast), with a correlation coefficient

of 0.62 and an RMSE of 58.3mm (12.3% of the

climatology). The 13-yr independent predictions dem-

onstrate that our statistical prediction model has a high

capability for capturing the YRV summer rainfall and is

therefore promising for real-time seasonal prediction.

5. Summary and discussion

Because the YRV summer rainfall has such distinct

variations on interannual and decadal scales and because

In
te

r-
an

nu
al

 R
ai

nf
al

l (
m

m
)

obs prediction 95% confidence intervals

FIG. 6. Interannual rainfall over 2001–13 from observations (open circles) and statistical pre-

diction model (green dots). Dashed lines denote the 95% confidence intervals.

FIG. 7. Decadal correlations of YRV summer rainfall with (a)–(c) seasonal mean SST, (d)–(f) monthly SLP, and (g)–(i) monthly 500-hPa

geopotential height over 1961–2000.
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the precursors that modulate the interannual rainfall

change with the decadal variation of background state, the

existing statistical prediction model, single and fixed, can-

not provide stable and accurate prediction. Efforts con-

tinue toward this end, and attempts to adopt more suitable

statistical techniques have resulted in the development of

new models that make use of novel statistical ideas for

improving the prediction skill for YRV summer rainfall.

In this study, we constructed the IAM and DM,

respectively, with precursors selected based on a set of

FIG. 8. Decadal correlations of SLPCP with (a) April, (b)May, (c) JJAmean SST, (d)–(f) corresponding 500-hPa vertical velocity (Pa s21),

and (g) JJA mean 850-hPa horizontal wind vectors (m s21) over 1961–2013.

FIG. 9. Decadal rainfall over the training period of 1961–2000 and the independent testing

period of 2001–13 from the observations (open circles) and statistical predictionmodel (green

dots). Dashed lines denote the 95% confidence intervals.
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objective criteria. Moreover, the moving updating of the

IAM with the latest data within an optimal length of

training period partially offset the effect of decadal change

of precursors that modulate the interannual rainfall. In

IAM, an optimal training period length of 20yr was

determined. To predict the interannual rainfall of 2001–13

for validation, 13 regression models were fitted with

precursors that change every 4–5 yr from the preceding

winter North Atlantic SSTA dipole for 2001 to the

Mascarene high for 2002–05, followed by the East Asia

SLPA dipole for 2006–10 and the preceding autumn

North Pacific SSTA dipole for 2012/13. This moving

updated IAM demonstrated high skill in predicting

interannual rainfall, with a correlation coefficient of

0.76 and a hit rate of 76.9%. The DM was linked to the

April SLPA in the central tropical Pacific, and it

maintained good performance in the testing period,

with a correlation coefficient of 0.77 and an RMSE of

7.7%. Taking the predicted interannual and decadal

rainfall together, we obtained the predictions of YRV

summer rainfall for 2001–13. Our statistical model

exhibited superior capability in predicting YRV sum-

mer rainfall even when compared with the best CFSv2

forecast initiated in early June (0-month-lead forecast),

as indicated by the increased correlation coefficient from

0.62 to 0.75 and reduced RMSE from 12.3% to 10.7%.

Moving updating of the IAM cannot completely

overcome the failure of statistical prediction stemming

from the decadal change of precursors that modulate the

interannual rainfall, especially for the rainfall of the year

in which the decadal change occurs. It should be ad-

mitted that the moving updated model outperforms the

traditional fixed statistical model because it can partially

offset the effect of decadal change. When compared

with those empirical models constructed previously to

predict the EASM strength (Wu et al. 2009; Wu and Yu

2016), our statistical model generates comparable or

even better skill, although differences exist in lead time

and prediction period. In addition, comparisons with

other dynamical predictions are needed since dynamical

models are themain tools for future seasonal prediction.

Li et al. (2016) evaluated an operational forecast system

currently used in Met Office, Global Seasonal Forecast

System, version 5 (GloSea5), whose ensemble mean

has a general good prediction for YRV summer rainfall

with a correlation coefficient of 0.55 for the 1992–2013

period. By comparison, our statistical model manifests

superior skill for YRV summer rainfall that is promising

for real-time operational prediction.
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APPENDIX

Cross-Validation-Based Stepwise Regression
Approach

The cross-validation-based stepwise regression (CVSR)

approach is a ‘‘forward’’ stepwise screening procedure

to select the ‘‘optimal’’ predictors from the potential

predictor set. It employs leave-one-out cross validation

in order to select the robust predictors and reduce the

false possibility. The root-mean-square error between

observation and cross-validation estimates (CV-RMSE)

is taken as the criterion to evaluate the performance of

potential predictors.

The CVSRmethod can be described in a general form

using a series of iteration steps:

Y(t)5 c1 �
p

i51

b
i
X

i
(t)1 «(t) , (A1)

where Y(t) is the predictand for a t 5 1, . . . , n year

training period, Xi(t) is the tth observation of the pre-

dictor Xi selected from candidate predictors Z1, . . . , Zm

FIG. 10. YRV summer rainfall anomalies over 2001–13 from the observations (gray bars),

1-month-lead CFSv2 forecasts (dark blue), 0-month-lead CFSv2 forecasts (light blue), and

the statistical prediction model (green). Dashed lines denote the 95% confidence intervals.
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by the ith step in ‘‘forward’’ stepwise regression

screening, c and bi are model parameters, and «(t) is the

error of the estimated model, Eq (A1). Model Eq. (A1)

is established by p , m steps:

Step 1: Regress the predictand Y(t) onto each of

the potential predictors Zi1[i1 2 (1, . . . , m)] to obtain

1-predictor regression equation fi1. The performance of

each 1-predictor regression equation is measured by

CV-RMSE at step 1 as

CV-RMSE
i1
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

t51

fY(t)2 f
i1,2t

[Z
i1
(t)]g2

s
, (A2)

where regression equation fi1,2t is fitted by Zi1( j)[ j 2
(1, . . . , n)\(t)], that is, all observations excluding the

tth one. If CV-RMSEi1 is the smallest CV-RMSE

achieved at step 1, that is, CV-RMSE1 5 mini12(1, ...,m)

(CV-RMSEi1), then the potential predictor Zi1 is se-

lected as the first predictor, that is, X1 5Zi1.

Step 2: RegressY(t) ontoX1 and each of the remaining

m 2 1 potential predictors Zi2[i2 2 (1, . . . , m)]\(i1)],

that is, all potential predictors except Zi1, to write

2-predictor regression equation fi2. The performance

of each 2-predictor regression equation is measured by

CV-RMSE at step 2 as

CV-RMSE
i2
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

t51

fY(t)2 f
i2,2t

[X
1
(t),Z

i2
(t)]g2

s
,

(A3)

where regression equation fi2,2t is fitted by

X1( j), Zi2( j)[ j 2 (1, . . . , n)\(t)]. Now, if CV-RMSEi2 is

the smallest CV-RMSE achieved at step 2, that is,

CV-RMSE2 5 mini22(1, ...,m)\(i1) (CV-RMSEi2), andmore-

over, CV-RMSE2 is significantly smaller than CV-

RMSE1, then the potential predictor Zi2 is selected as

the second predictor, that is, X2 5Zi2; otherwise, stop

selecting new predictors. To statistically test the signif-

icant reduction in CV-RMSE2 relative to CV-RMSE1,

t andF tests are utilized to test the quadratic errors series

between the observation and cross-validated estimates ob-

tainedat step2 hi.e., {Y(t)2 f2,2t[X1(t),X2(t)]}
2, t2 (1, . . . ,n),

where f2,2t is fitted by X1( j), X2( j), [ j 2 (1, . . . , n)\(t)]i
and at step 1 hi.e., {Y(t) 2 f1,2t[X1(t)]}

2, t 2 (1, . . . , n),

where f1,2t is fitted byX1( j), [ j 2 (1, . . . , n)\(t)]i in terms

of the mean value and the variance.

Generally, at step k, assume that there are k 2 1

predictors X1 5Zi1, . . . , Xk21 5Zik21
selected from the

original potential predictors Z1, . . . , Zm, and the asso-

ciated smallest CV-RMSE at step k 2 1 is

CV-RMSE
k21

5 min
ik212(1,...,m)\(i1,..., ik22)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

t51

fY(t)2 f
ik21,2t

[X
1
(t), . . . ,X

(k22)
(t),Z

ik21
(t)]g2

s
, (A4)

where regression equation fik21,2t is fitted by X1( j), . . . ,

X(k22)( j), Zik21
( j), [ j 2 (1, . . . , n)\(t)].

Regress Y(t) onto X1, . . . , Xk21 and each Zik[ik 2
(1, . . . , m)\(i1, i2, . . . , ik21)] of remaining m 2 (k 2 1)

potential predictors to write k-predictor regression

equation fik. The performance of each k-predictor

regression equation is measured by CV-RMSE at

step k:

CV-RMSE
ik
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

t51

fY(t)2 f
ik ,2t

[X
1
(t), . . . ,X

(k21)
(t),Z

ik
(t)]g2

s
, (A5)

where regression equation fik ,2t is fitted by X1( j), . . . ,

X(k21)( j), Zik( j), [ j 2 (1, . . . , n)\(t)].

If CV-RMSEik is the smallest CV-RMSE achieved

at step k, that is, CV-RMSEk 5 minik2(1,...,m)\(i1,..., ik21)

(CV-RMSEik), and moreover, CV-RMSEk is signifi-

cantly smaller than CV-RMSEk21, then the potential

predictor Zik is selected as the kth predictor, that is,

Xk 5Zik; otherwise, stop selecting new predictors.

The t and F tests are utilized to statistically test

the quadratic errors series between the observation

and cross-validated estimates obtained at step k hi.e.,

{Y(t)2fk,2t[X1(t), . . . ,Xk(t)]}
2, t2(1, . . . , n)2, where fk,2t

is fitted byX1(j), . . . ,Xk(j), [j 2 (1, . . . , n)\(t)]i and at step

k 2 1 hi.e., {Y(t) 2fk,21,2t[X1(t), . . . , Xk21(t)]}
2, t 2

(1, . . . , n), where fk,21,2t is fitted byX1( j), . . . , Xk21( j),

[ j 2 (1, . . ., n)\(t)]i in terms of the mean value and the

variance.

Finally, for all of the selected predictors via the CVSR

procedure, the F test is used to test their regression co-

efficients. The insignificant predictors would be excluded,

and the remaining predictors are used to fit the multi-

linear regression equation with the least squares method.
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